Efficient Algorithms for Non-convex Isotonic Regression through Submodular Optimization

نویسنده

  • Francis R. Bach
چکیده

We consider the minimization of submodular functions subject to ordering constraints. We show that this optimization problem can be cast as a convex optimization problem on a space of uni-dimensional measures, with ordering constraints corresponding to first-order stochastic dominance. We propose new discretization schemes that lead to simple and efficient algorithms based on zero-th, first, or higher order oracles; these algorithms also lead to improvements without isotonic constraints. Finally, our experiments show that non-convex loss functions can be much more robust to outliers for isotonic regression, while still leading to an efficient optimization problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning with Submodular Functions: A Convex Optimization Perspective

Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analy...

متن کامل

Submodular Functions: from Discrete to Continous Domains

Submodular set-functions have many applications in combinatorial optimization, as they can be minimized and approximately maximized in polynomial time. A key element in many of the algorithms and analyses is the possibility of extending the submodular set-function to a convex function, which opens up tools from convex optimization. Submodularity goes beyond set-functions and has naturally been ...

متن کامل

Mirror-Descent-like Algorithms for Submodular Optimization

In this paper we develop a framework of submodular optimization algorithms in line with the mirror-descent style of algorithms for convex optimization. We use the fact that a submodular function has both a subdifferential and a superdifferential, which enables us to formulate algorithms for both submodular minimization and maximization. This reveals a unifying framework for a number of submodul...

متن کامل

Submodular Functions: Optimization and Approximation

Submodular functions are discrete analogue of convex functions, arising in various fields of applied mathematics including game theory, information theory, and queueing theory. This survey aims at providing an overview on fundamental properties of submodular functions and recent algorithmic developments of their optimization and approximation. For submodular function minimization, the ellipsoid...

متن کامل

Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms

DR-submodular continuous functions are important objectives with wide real-world applications spanning MAP inference in determinantal point processes (DPPs), and mean-field inference for probabilistic submodular models, amongst others. DR-submodularity captures a subclass of non-convex functions that enables both exact minimization and approximate maximization in polynomial time. In this work w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.09157  شماره 

صفحات  -

تاریخ انتشار 2017